• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar

Click here to download the  free ebook of Alberto Juantorena’s  detailed training workouts leading up to the 1976 Montreal Olympics

SpeedEndurance.com

Success in Track & Field ... and Life

  • Home
    • About
    • Contact
  • Track & Field
    • 400 meters
    • 800m & Mile
    • 1/2 & Full Marathons
    • Long & Triple Jump
    • Hurdles
  • Training
    • Weight Training
    • Abs & Core
    • Injury Prevention
    • Shoes & Spikes
    • Masters
  • Coaching
    • Freelap Friday Five
    • Interviews
    • Sports Nutrition
    • Sport Psychology
  • Archives
  • Shop
    • My account
    • Checkout
    • Basket

Usain Bolt vs Airplane: Who wins?

You are here: Home / Life & Culture / Usain Bolt vs Airplane: Who wins?
17
SHARES
FacebookTwitter

August 13, 2013 by Vassilios McInnes Spathopoulos Leave a Comment

Last Updated on October 24, 2015 by Jimson Lee

This article is guest blogged by University lecturer Dr. Vassilios McInnes Spathopoulos, author of An Introduction to the Physics of Sports.   You can read my review in Introduction to the Physics of Sports.

He also wrote Windy Records in Track & Field and The Effect of Wind on Curve Running.

With all the talk about Usain Bolt vs. Mo Farah, or Usain Bolt  vs. Kenenisa Bekele at 600 meters, ever wonder what would happen with Bolt vs. an airplane?

Usain Bolt vs Airplane - Who wins

Photo credits: British Airways

The Race of the Century: Usain Bolt vs Airplane

An Introduction to the Physics of Sports - Dr Vassilios McInnes Spathopoulos

In Moscow, Usain Bolt managed to impress again. It seems as if for the time being, as far as his fellow humans are concerned, there is nobody that can challenge him, at least when it comes to the big races. So maybe the time has come to for him to compete with something else! How would he fare for example, when racing against an aircraft taking off? With the use of basic physics, we can create a virtual race and view some interesting results. The following is an excerpt from my book “An Introduction to the Physics of Sports” (or see, www.physicsandsport.com/en).

To make such a race possible we need to create two mathematical models, in other words a set of equations that represent, at least to a certain degree, the performance of the athlete and of an aircraft during the take off phase. We can then simulate a race in order to find out which of the two, the fastest athlete in the world or one of our greatest technological achievements, will come first.

See also  Why Do You Hear the Gun AFTER the Sprinters Leave the Blocks?

The mathematical modeling, i.e. deriving the mathematical equations that represent the model, is quite complicated, so I will not go into it in detail[1]. What I should point out, is that for an airplane, I chose the Northop T-38 Talon, twin engine, supersonic, trainer jet. This was the first supersonic trainer and one of the most popular ever, so we are certainly dealing with a tough competitor.

The fastest sprint races are those of the 100 meters and 60 meters. We will compare the performance of the two competitors in both distances. The results are presented in the following figures. The dark line represents the aircraft and the lighter one, Bolt.

clip_image002
Figure 1: Distance comparison

At first glance we notice that the two competitors are very close to each other, especially for the 60m. A more detailed analysis reveals that the airplane wins the 100m, by a margin of 1.3s, whereas our athlete wins the 60m by about 0.2s! The representative of the human race starts off impressively and actually leads the race for the first 66m. It is a great achievement in any case, considering that each engine of the T38 produces a huge amount of thrust.

To fully understand what is happening, we need to study the variation of speed and acceleration (see figures 2, 3).

clip_image004
Figure 2: Speed Comparison

clip_image006
Figure 3: Acceleration comparison

From the last figure we can see that the airplane maintains an almost constant acceleration, of just over 3m/s2 which drops very slightly due to the presence of air resistance. When we move with a constant acceleration the speed increases at a constant rate, as observed in figure 2. The final speed of the airplane after 100m is 24.7m/s, almost 89km/hr.

See also  Baking Soda and Beta Alanine (Ethical Cheating or Ergogenic Aids)

We also see that our athlete makes an explosive start. His initial acceleration is 9.7m/s2. This is almost the acceleration of someone descending freely towards Earth, so he starts off as if falling from the balcony of a high building! Due to his high initial acceleration his speed increases dramatically and reaches 10m/s (36km/hr), in about 2.2s.

Human power though has its limitations and as we see, his speed reaches a maximum that cannot be overcome (just over 12m/s) and, in fact, it falls slightly during the last few meters. In summary, Bolt starts off with a huge acceleration, more than three times that of the airplane, which is enough to win him the 60m section of the race. On the other hand, his acceleration starts to fall immediately and the aircraft, which maintains an almost constant acceleration, wins the 100m.

So according to our calculations, the race between human and airplane ends in a draw. It should be noted that the mathematical models used, especially that for the airplane, contain many simplifications and the scope of this example was to comprehend certain principles and not necessarily to announce a winner. In any case, I hope you enjoyed it!

About the Author

Dr Vassilios McInnes Spathopoulos

Dr. Vassilios McInnes Spathopoulos graduated from the University of Glasgow (UK), with a joint honours degree in Aerospace and Electronic Engineering, in 1995. The following year he completed a MSc course in Flight Dynamics at Cranfield University (UK). In 2001 he obtained his PhD from the University of Glasgow, conducting research on the validation of a rotorcraft mathematical model by means of flight testing a gyroplane. He teaches undergraduate subjects at the Department of Aircraft Technology, at the Technological Education Institute (TEI) of Chalkis, Greece. His research interests include the aerodynamics of sports balls and improving engineering education.

See also  The Effect of Wind on Curve Running

NOTES:

[1] The equations used are taken from: Helene O. and Yamashita M.T., “The force Power and energy of the 100 meter sprint” (2010), Am. J. Phys. 78 (3), 307-309 and Yechout T.R., Morris S.L., Bossert D.E., Hallgren W.F., “Introduction to Aircraft Flight Mechanics: Performance, Static Stability, Dynamic Stability, and Classical Feedback Control” (2003), AIAA Education Series.

Category iconLife & Culture,  Track & Field Tag iconVassilios McInnes Spathopoulos

Reader Interactions

Leave a Reply Cancel reply

Primary Sidebar

Recommended

https://www.youtube.com/watch?v=0xbs-aWxyLk

Shop Our Store

  • Bud Winter (9)
  • Championship Productions (6)
  • Clyde Hart (2)
  • Derek Hansen (1)
  • Electrical Muscle Stimulation (2)
  • Jim Hiserman (6)
  • Jimson Lee (4)
  • Uncategorised (0)

Articles by Category

Products

  • Jim Hiserman - Developing 800m Runners: Identifying, Categorizing and Developing 400m-800m Type Athletes $42.99 $39.99
  • Private Coaching - Monthly Plan $600.00 $525.00
  • Jim Hiserman-Developing-Distance-Runnersv2 Jim Hiserman - Developing Distance Runners Volume 2: A Systematic Approach to Developing Individual Success within a Dynamic Team Culture $34.95 $29.95
  • Feed-the-Cats-Clinic-3-Pack-701 'Feed the Cats' Clinic 3-Pack $64.99
  • Tony Holler's Feed the Cats": A Complete Sprint Training Program Tony Holler's "Feed the Cats" Complete Sprint Training Program $49.99
  • Bud Winter and Speed City presents Arthur Lydiard 509x716 Bud Winter & Arthur Lydiard MP3 [Download only] $9.99

RECENT POSTS

  • Oregon22 Coaches Club now Online
  • IFAC 2022: The Return of In-Person Conferences (with Virtual option)
  • Here is our 400m Discussion Recording… over 2 Hours Long
  • The Best Free Coaching Book – post Beijing 2022 Olympics
  • The Ultimate 400m Track Webinar for Coaches & Athletes
  • NACAC Athletics Coaching Science Series 2022
  • Top Six 400m Predictor Workouts (Number 4 is my Favourite)
  • Best 6 Podcasts for 2021 (and Beyond)
  • Why Karsten Warholm’s 45.94 400mH WR is my Highlight of 2021
  • Sprinting: 10 Research Articles for Effective Sprint Training [Part 23]

Copyright © 2023. SpeedEndurance.com is owned and operated by Aryta Ltd. Privacy Policy | Cookie Policy
Privacy & Cookies: This site uses cookies. By continuing to use this website, you agree to their use.
To find out more, including how to control cookies, see here: Cookie Policy
Manage Cookie Consent
To provide the best experiences, we use technologies like cookies to store and/or access device information. Consenting to these technologies will allow us to process data such as browsing behaviour or unique IDs on this site. Not consenting or withdrawing consent, may adversely affect certain features and functions.
Functional Always active
The technical storage or access is strictly necessary for the legitimate purpose of enabling the use of a specific service explicitly requested by the subscriber or user, or for the sole purpose of carrying out the transmission of a communication over an electronic communications network.
Preferences
The technical storage or access is necessary for the legitimate purpose of storing preferences that are not requested by the subscriber or user.
Statistics
The technical storage or access that is used exclusively for statistical purposes. The technical storage or access that is used exclusively for anonymous statistical purposes. Without a subpoena, voluntary compliance on the part of your Internet Service Provider, or additional records from a third party, information stored or retrieved for this purpose alone cannot usually be used to identify you.
Marketing
The technical storage or access is required to create user profiles to send advertising, or to track the user on a website or across several websites for similar marketing purposes.
Manage options Manage services Manage vendors Read more about these purposes
View preferences
{title} {title} {title}